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Abstract—Smart cities and Intelligent Transportation Systems
rely upon the deployment of sensors in strategic areas for such
purposes as crime prevention, urban planning, and road safety.
In this paper, we rely on the pervasiveness of smartphones and
microphones inside moving vehicles to propose a sound-based
event detection system which does not require static sensing in-
frastructure. We train an embedded Deep Neural Network model
able to identify potentially dangerous events like car accidents
or emergency vehicles approaching from recorded sounds. We
evaluate our model on a large novel dataset of sounds recorded
inside the car cabin with audio data augmentation techniques
applied thereon. We further evaluate model performance after
model quantization, or the addition of environmental noise.
Results show an excellent detection accuracy for dangerous events
achieving a Matthews Correlation Coefficient (MCC) of 0.95.

I. INTRODUCTION

The growth of vehicular communications worldwide pushes
the creation of monitored urban areas, called smart cities,
through participatory, or pervasive sensing. Smart cities aim
to increase road safety, prevent crimes, provide better urban
planning, and manage traffic by analyzing data usually com-
ing from sensing infrastructures composing large surveillance
systems [1].

Typical road surveillance systems rely on a coordinated
set of cameras [2] or microphone arrays [3], [4]. This in-
frastructure becomes expensive in both a computationally and
monetarily, and does not scale well in large cities. Also, static
infrastructure may not follow the real traffic density and have
reduced performance due to environmental conditions such
as fog, rain, or background noise. Thus, instead of cameras
or microphones, an alternative for surveillance systems is
to rely on driver participation. Waze is an example of a
successful smartphone app for road navigation that leverages
crowdsourced reports sharing warnings and other helpful
information among drivers. Nevertheless, it requires human
interaction, which may introduce bias, reporting time delay,
lower reliability, and coverage issues [5]. Additionally, the use
of smartphones during driving is a source of hazards itself.

This paper proposes a dataset and a model for audio event
recognition from inside the car cabins to further create a
participatory road surveillance system for mobility safety. The
goal is to recognize crashes or other hazardous situations
without static sensing infrastructure or driver interaction.

Audio streams are recorded and analyzed by drivers’ smart-
phones or by the in-vehicle infotainment (IVI) system within

the moving vehicles. Modern smartphones and IVIs have
both microphones and enough computational power for signal
analysis and processing. Moreover, relying on a audio analysis
has a twofold advantage: the pervasiveness of devices embed-
ding a microphone (smartphones), and avoiding rigid device
positioning, which would be the case with cameras.

We assume a standard five-layer system for our audio
surveillance system composed from the bottom up of data
acquisition, background subtraction, event classification, event
positioning and tracking, and situation analysis. In this paper,
however, we focus on the third layer for event classification,
which aims to discern Events of Interest (EoI) among a large
sequence of events and signals. In particular, we want to
distinguish events dangerous to drivers’ safety (e.g., car acci-
dents, slippery pavement, and emergency vehicle approaching
at high speed) from the sounds of normal driving activity.
To accomplish this task, the audio stream is split into small
segments, and a spectrogram image is derived from each one
of them. Then, a DNN (Deep Neural Network) is trained
to classify such spectrogram images. As DNN, we employ
a MobileNetV2 model [6] which presents a good trade-off
between classification accuracy and inference speed in mobile
applications. Nevertheless, DNN models do not generalize
well if not trained on a very large and appropriate dataset.
Therefore, we have preliminary created a novel dataset of
audio signals recorded from inside the car cabin. Furthermore,
we extended such dataset through signal manipulation and new
signals generation with the use of a second DNN. We eval-
uate the audio event detection model with standard machine
learning metrics with and without extra background noise and
with or without optimizations for low-capability devices (IVIs
or older smartphones). We show that our system can correctly
detect car crashes, car horns, tire skidding, sirens, and other
sounds listened inside the cabin.

In a nutshell, our main contributions are:

• We create a large dataset of driving and road environ-
mental sounds recorded within vehicles. As such dataset
presents unique aspects, we share it with the research
community 1.

• We build a sound classification mobile application em-
bedding a DNN model and we experiment its perfor-

1Scripts to recreate the dataset are available at https://github.com/Githeo/
NINA-Dataset.

PERVEHICLE 2024: Sixth International Workshop on Pervasive Computing for Vehicular Systems

979-8-3503-0436-7/24/$31.00 ©2024 IEEE 581

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 P

er
va

si
ve

 C
om

pu
tin

g 
an

d 
C

om
m

un
ic

at
io

ns
 W

or
ks

ho
ps

 a
nd

 o
th

er
 A

ff
ili

at
ed

 E
ve

nt
s (

Pe
rC

om
 W

or
ks

ho
ps

) |
 9

79
-8

-3
50

3-
04

36
-7

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

Pe
rC

om
W

or
ks

ho
ps

59
98

3.
20

24
.1

05
03

38
1

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO. Downloaded on May 28,2024 at 15:18:45 UTC from IEEE Xplore.  Restrictions apply. 



mance in various scenarios: presence of different types
and levels of noise and post-training model optimiza-
tion. 2. Such experiments evaluate its pervasiveness on
limited capacity devices.

This paper is structured as follows: Section II details the
dataset created and the data augmentation techniques involved.
Section III presents the model for audio classification as well
as the classification results with and without post-training
optimization. We evaluate the classification performance in
the presence of colored noise in Section IV. We examine
the system effectiveness and adoption aspects in Section V,
while Section VI deals with related work. Finally, Section VII
concludes this paper and draws future directions.

II. NINA DATASET

Although some urban and road sound collections exist [4],
[7], [8], [9], [10], [11], none of them record audio events
from inside the car cabin. It is extremely costly to reproduce
some classes of sound (e.g., impacts among real vehicles)
and very difficult to artificially create them. In addition, we
need to distinguish the sounds of potential hazards from all
the other sounds linked to normal driving activity. Hence, we
have decided to create a novel dataset of urban and road-
related sounds recorded inside the car cabin, called the NINA
(Naturalistic IN-vehicle Audio) dataset. We share this dataset
with the research community for other pervasive applications.
In particular, we took advantage of the Audacity audio editing
software [12] to annotate audio tracks recorded by dashcams
and published on YouTube. We focus our labeling task on the
following seven classes grouped in two areas:

• Events of Interest (EoI). These classes generate alerts
to share with other drivers:

– Crash. Accidents between any kind of vehicle and
with a different degree of severity.

– Tire. Tire skidding sounds, often provoked by a
harsh braking to avoid an impact or by slippery
pavement.

– Emergency. Siren sounds produced by EVs (Emer-
gency Vehicles). Records come from police cars, am-
bulances, and fire trucks in Italy, France, Germany,
and Netherlands.

– Horn. Various kinds of car horn.
• Internal. Sounds generated inside the ego-vehicle and

related to a normal driving behavior:
– Driving. This class includes the sound of the vehicle

engine running at constant speed as a normal driving
activity.

– Voice. People talking inside the vehicle in different
languages.

– Music. Radio music clips of various kind.
A further advantage using the NINA dataset is that audio

clips are genuine: they include noise and background sounds
that we could expect in real life (e.g., windscreen wiper

2A demo is available at https://github.com/Githeo/CarAudioSensing-Demo.

Pitch shift

. . .

Time stretch

Original clip

. . .

Signal inversion Wavenet

Clip splitting into augmented segments

Segments log-scaled mel-spectrograms of size 128x101x3

Fig. 1. Original audio clip augmentation and splitting into fixed size
spectrograms.

swinging, turn signals, strong wind, etc.). Also, since the
recording microphones are different too, we are close to real
in field conditions.

All the audio clips are resampled to 22,050 Hz and normal-
ized in amplitude. They all have a different duration: some
clips could be very short, e.g., short car horn activation or fast
tire skidding. To catch such sounds, we split clips in segments
of 12,800 samples (about 0.5 seconds at 22,050 Hz) with a
50% overlap to grasp sounds falling at the middle of two
consecutive segments. Then, for each segment we compute the
log-scaled mel-spectrogram with 128 bands, FFT window and
hop size of 1024 and 128 samples, respectively. Finally, we
compute first and second order deltas (with the default python
library librosa settings), resulting in segments ∈ R128x101x3.
Ultimately, a serialized version of the dataset has a size of 15
GByte. Hereafter, we consider segment spectrogram images in
place of raw audio signals.

A. Data augmentation

CNNs (Convolutional Neural Networks), as DNNs in gen-
eral, show an effective ability in classification tasks, but they
need a large amount of training data in order to well generalize
and classify unseen data. We apply the following augmentation
techniques on the raw audio signals:

• Pitch shifting. This manipulation shifts a signal up or
down in frequency keeping the same time duration. Each
original audio clip is pitch shifted by semitones in the set
{-4, -3, -2, -1, 1, 2, 3, 4}.

• Time stretching. Opposite to the pitch shift, this effect
changes the speed of an audio signal without affecting
its pitch. We use 6 time stretch scaling values: {0.7, 0.8,
0.9, 1.2, 1.5, 2.0}.

• Signal inversion. The audio signal is reversed while
sound classes remain unchanged to human listeners.
Even people talking clips remain distinguishable although
hardly intelligible. It is equivalent to flip horizontally the
spectrogram image.

• WaveNet generated signals. WaveNet is a DNN for
generating raw audio signals initially developed for TTS
(Text-To-Speech) applications [13]. WaveNet directly
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TABLE I
AMOUNT OF ORIGINAL CLIPS AND RELATED AUGMENTED SEGMENTS.

Type Class Original
clips

Augmented
segments

EoI

Crash 751 32368
Tire 186 7565
Horn 261 11968

Emergency 259 123828

Internal
Driving 295 56168
Voice 422 34170
Music 198 43027

Sum 2372 309094

generates samples of a raw audio waveform where each
sample probability is conditioned on the samples at all
previous timestamps. In order to reduce computational
cost with respect to recurrent neural networks (RNN),
WaveNet uses dilated convolutions to keep a low number
of hidden layers and a µ-law companding transformation
to reduce the softmax layer from 216 to 28 possible output
values. WaveNet eventually outputs new audio signals
similar to the original ones but with a certain mutation
degree. The new signals have a resolution of 16 KHz and
are re-quantized at 16 bits.

Figure 1 illustrates the data augmentation and splitting
applied to the original audio clips, while Table I summarizes
the amount of original clips and augmented segments per class.
Original clips have all different duration in according of their
nature: crash and tire skidding sounds usually last few seconds,
whereas music and driving clips have longer duration. For
this reason, even if original driving or music clips are less
numerous than crash clips, they are split into more numerous
augmented segments. For each original clip, an equal group id
is assigned to its segments and augmented segments. The idea
of assigning a common id is to prevent segments belonging
to the same root clip presenting in multiple different subsets
during the training, validation, and test dataset split. A 5%
of non-augmented segments, including all the classes, are
randomly chosen to compose the test set used to evaluate the
model generalization at the very end. All the other segments
having the same group id are completely discarded. The
network weights used to classify the test data result in the best
accuracy on the validation set (15% of the remaining dataset)
after a 10-fold cross validation training.

III. MODEL AND SOUND CLASSIFICATION RESULTS

One of the most popular approaches for sound classification
is to consider the spectrogram image of the sounds and
then leverage a deep convolutional neural network to classify
images [14], [15], [16], [17], [18], [19]. In this work, we follow
this stream, mainly for training computational cost reasons
with respect to analyzing the raw audio signal with recurrent
neural networks [20], [21] and for inference performance
with respect to feature-oriented models [22], [23], [24], [25].
Moreover, the model we use, MobileNetV2, is designed to
run on the edge for mobile visual recognition tasks including

Fig. 2. Multi-class normalized confusion matrix for test set classification
(values rounded at the second decimal). MCC = 0.905.

classification, object detection, and semantic segmentation [6].
Its architecture is especially designed to efficiently run on
devices with low computational power (drivers’ smartphone or
IVIs in our case) due to its optimal trade-off between accuracy
and model size or complexity [26].

MobileNetV2 uses depthwise separable convolution as ef-
ficient building blocks. Also, it removes non-linearities in
the narrow layers and shortcuts connections between them in
order to maintain representational power. For transfer learning
purposes, we load the MobileNetV2 architecture with weights
inherited from ImageNet and we add a dense layer of 256
units and ReLU activation followed by a 7 units dense layer
with softmax activation. We took advantage of Tensorflow
with Keras as high level neural-network libraries for model
development and training.

A. Classification result

Figure 2 shows the normalized confusion matrix for the
test set classification. Classification is very close to perfection
for two very important classes, crash and emergency, with
95% and 99% respectively. Also, the event-free driving is
well recognized: 91%. Car horn sounds, instead, are often
misclassified as emergency sirens. Actually, they present some
similarities: a high amplitude, sustained for long time at some
specific frequencies (fundamental and harmonics). As an im-
age then, they both show long horizontal peaks of amplitude at
some frequencies. Music can contain any instrument, voice and
sustained rhythm, thus 10% of their samples are misclassified
as horn or voice samples. Finally, 81% of tire skidding sounds
are well classified.

PERVEHICLE 2024: Sixth International Workshop on Pervasive Computing for Vehicular Systems

583
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO. Downloaded on May 28,2024 at 15:18:45 UTC from IEEE Xplore.  Restrictions apply. 



As the NINA dataset is unbalanced, to appreciate the
final test set classification performance, we also rely on the
Matthews Correlation Coefficient (MCC), which is equal to
0.905, very close to the state of the art on image classification
results.

B. Post-training optimization

The model for sound recognition is intended to be embedded
and run in pervasive devices like drivers’ smartphone, IVIs or
any other ad hoc hardware. Therefore, we further experiment
performances after model optimization for limited hardware
capabilities both for storage and inference execution latency.
In particular, we employ post-training quantization techniques
which, as a first step, can reduce the model size, and then
improve CPU and hardware latency in exchange for a degra-
dation in accuracy.

The model trained in the previous section initially has a 30
MByte size on disk. Taking advantage of the TensorFlow Lite
conversion tool, the model is compressed to 10 MByte. At this
point, we test two quantization methods:

• Float16 quantization. Model parameters are quantized to
a 16-bit floating point representation which halves both
the overall size of the model and the CPU bandwidth used
during the parameters loading process. Some hardware
is also optimized to work with 16-bit floating points
numbers resulting in reduced latency.

• Hybrid quantization. Weights are converted from 32-bit
floating point numbers to the 8-bit integers, while keeping
biases and activations with the original representation.
Also computation is mixed between floating point and
integer. Benefits include a model size reduced 4 times
and an inference speed 2 times faster.

In the first case, model size is equal to 5Mbytes, while
it executes in 32-bit floating point numbers anyway, thus its
accuracy remains mostly unchanged: MCC = 0.904.

With the hybrid optimization, weights are converted from
8-bits of precision to floating point at inference time. This
conversion is done once and cached to reduce latency. Never-
theless, classification results highly degraded (MCC = 0.72),
even though the model size is half of the precedent opti-
mization. Considering this last result, we renounce to further
convert the model to a full integer quantization of weights and
activations.

IV. NOISE ROBUSTNESS

Sensing systems, especially audio and video-based, often
deal with the problem of background subtraction. The aim
is to reduce the noise affecting and degrading images and
signals. However, trying to clean a signal and run inference
continuously can become computationally expensive and time
demanding. On the other hand, the NINA dataset contains
audio clips recorded in vivo, thus already including other road
background sounds like city bustle, traffic noise, heavy rain,
or strong wind. The classification presented in Section III-A
implicitly takes into account this aspect.

(a) Classification MCC values with increasing colored noise power.

(b) Percentage of samples classified as “driving” class.

Fig. 3. Classification results adding white, pink and brown noise to the test
set samples.

Nevertheless, in this section, we experiment and estimate
the impact of noise generated by the recording equipment or
by the vehicle itself with its air conditioning vents or engine.
In fact, microphones are prone to add self-noise due to high
temperatures (called thermal noise), current running in the
circuitry (called shot noise) and subsequent amplification. We
model such kinds of noise adding a white Gaussian noise to
the test set samples. Moreover, dashcams and smartphones are
usually placed on the front windscreen, or immediately up to
the vehicle dashboard. In such conditions, the microphones are
closer to the vehicle air conditioning vents and to the engine.
We model these cases adding to the testing samples pink and
brown noise signals, respectively, as they present a spectral
density more concentrated to low frequencies.

Figure 3(a) shows the classification MCC values when
adding colored noise. As shown on the x-axis, noise signals
never overcome in power the original sounds, but they span
from having the same power (SNRdB = 0) till a SNRdB =
20. Brown noise has the most notable impact, as shown
through sharpest decrease in MCC with decreasing SNR.
Also the pink noise has a quite important degrading effect
on classification for low SNR values, while the results with
white noise remain acceptable (MCC = 0.87 as minimum).
Figure 3(b) shows the reason for the MCC decreasing: most of
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the misclassification is related to sounds classified as “driving”
while being actually another class. The driving class, in fact,
does not include any special event, but just the running engine
at different speeds, which sounds like a brown noise. The
white noise instead masks events, making the spectrogram
more blurry. These results are obtained with a non-quantized
model.

V. DISCUSSION

In this section, we examine concerns impacting the adoption
and the effectiveness of the proposed pervasive sensing system.

Privacy. The utilization of a microphone often raises con-
cerns about eavesdropping. It is worth to note, that the model
presented in Section III is designed and implemented to
run embedded in a mobile application and it operates the
classification on the fly. Thus, what is listened within the
vehicle, remains inside the vehicle. Also, GPS locations are
transmitted only when an EoI occurs.

Coverage and adoption. The territory coverage of a
participatory system is proportional to the number of users
involved. Its initial adoption follows the same rule: more
users involved, more EoI labeled and even more users are
attracted. Conversely, if only few users contribute, new users
will not be encouraged to participate unless other incentives
are given [27]. Such impasse is overcome if public transports
are involved. For instance, the sensing vehicles include all the
public buses, the surveillance system will cover the main city
road all day long.

Complementarity. The usage of commodity and perva-
sive devices and technology (namely smartphones and Wi-
Fi) makes the system easy to interact with pre-existing
surveillance road side units (RSU) and infrastructure. Thus,
the proposed participatory approach can coexist with other
surveillance systems already deployed in smart cities.

VI. RELATED WORK

A review about audio surveillance is proposed in [3]. Foggia
et al. are among the first authors designing a road surveillance
system via the deployment of a road side large microphone
array [28], [29], [24], [4], [30], [31]. Initially, their audio
classification was based on a combination of bag of words
and SVM with features extracted from the raw audio signals.
Successively, DNN models, in the form of CNN, have proved
their effectiveness in classifying audio signals from their
spectrogram representation. SoReNet [32] is just an example
of CNN-based audio surveillance system among others [33],
[34], [35], [36], [37]. The following two sets of problems
are neglected in such works. Besides model performance, the
practical deployment of these systems is directly tied to their
scalability, cost, and modularity. Hence, relying on a fixed
infrastructure and on computationally expensive DNN models
is not an approach ready for wide adoption. The second issue
regards the training of deep learning models: they require a
massive amount of data in order to well generalize on unseen
signals and none of the mentioned works perform audio data
augmentation beforehand.

Specific works on sound classification focus on audio data
augmentation too [15], [17], [38], [39], [40], [41]. Some
techniques introduced in these works, like time stretching,
pitch shifting, and noise injection, are widely adopted. Other
approaches like dynamic range compression, random cropping,
and equalization are more linked to specific domains (e.g.,
techniques for speech recognition problems). Our work also
relies on these known standards in addition to signal inversion
and transfer learning using WaveNet DNN, ensuring that the
signal semantic would not change.

VII. CONCLUSION

In this paper, we have presented and experimented a sound
event detection model for mobility safety. It is the core of a
participatory sensing system for road surveillance and mobility
safety for smart cities and ITS. Large-scale participation de-
pends upon the ability to run such model on pervasive devices
with an embedded microphone (e.g., drivers’ smartphones and
IVIs). For this reason, we evaluated the model performance
with the presence of different kinds and level of noise, and
reducing the model size and inference time devices with
limited capacity.

EoI are recognized via a CNN model specifically trained
to discern sounds by their spectrogram image representation.
Trained and tested on our novel, large, dataset of sounds
recorded from inside the vehicle cabin, the model has a MCC
= 0.905 over seven classes.

We plan to add other EoI sounds in the dataset like gun
shots, people screaming, or pothole. Such audio signals still
must be recorded within the vehicles. As a future work, we
would like to include event localization using one, two, or
more than two sensing vehicles.
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